skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yahalomi, Daniel A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Transit timing variations (TTVs) can be induced by a range of physical phenomena, including planet–planet interactions, planet–moon interactions, and stellar activity. Recent work has shown that roughly half of moons would induce fast TTVs with a short period in the range of 2–4 orbits of its host planet around the star. An investigation of the Kepler TTV data in this period range identified one primary target of interest, Kepler-1513 b. Kepler-1513 b is a $$8.05^{+0.58}_{-0.40}$$ R⊕ planet orbiting a late G-type dwarf at $$0.53^{+0.04}_{-0.03}$$ au. Using Kepler photometry, this initial analysis showed that Kepler-1513 b’s TTVs were consistent with a moon. Here, we report photometric observations of two additional transits nearly a decade after the last Kepler transit using both ground-based observations and space-based photometry with TESS. These new transit observations introduce a previously undetected long period TTV, in addition to the original short period TTV signal. Using the complete transit data set, we investigate whether a non-transiting planet, a moon, or stellar activity could induce the observed TTVs. We find that only a non-transiting perturbing planet can reproduce the observed TTVs. We additionally perform transit origami on the Kepler photometry, which independently applies pressure against a moon hypothesis. Specifically, we find that Kepler-1513 b’s TTVs are consistent with an exterior non-transiting ∼Saturn mass planet, Kepler-1513 c, on a wide orbit, $$\sim 5~{{\ \rm per \, cent}}$$ outside a 5:1 period ratio with Kepler-1513 b. This example introduces a previously unidentified cause for planetary interlopers in the exomoon corridor, namely an insufficient baseline of observations. 
    more » « less
  2. null (Ed.)
  3. Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ . 
    more » « less
  4. null (Ed.)